Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Pharmacol Rev ; 76(2): 267-299, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351071

RESUMO

Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic ß cells, GPCRs regulate ß-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient ß-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the ß cell serve a critical role in the regulation of ß-cell function, including ß-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating ß-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic ß cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve ß-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of ß-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Arrestinas/metabolismo , Insulinas/metabolismo , Fosforilação
3.
J Biol Chem ; 299(12): 105418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923138

RESUMO

Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/enzimologia , Neoplasias Uveais/genética
4.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490535

RESUMO

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Assuntos
Arrestina , Transdução de Sinais , beta-Arrestinas/metabolismo , Arrestina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
5.
Cardiovasc Drugs Ther ; 37(2): 245-256, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997361

RESUMO

PURPOSE: ß-Adrenergic receptors (ßAR) are essential targets for the treatment of heart failure (HF); however, chronic use of ßAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of ß2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a ß-arrestin (ßarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS: We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of ßarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS: Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION: Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of ß2AR to promote Gi protein/ßarr-dependent activation of RhoA/ROCK/PKD signaling.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Transdução de Sinais , Proteína Quinase C/metabolismo , Proteína Quinase C/farmacologia , Insuficiência Cardíaca/metabolismo , Contração Miocárdica
6.
Mol Cancer Ther ; 22(1): 63-74, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223548

RESUMO

Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.


Assuntos
Melanoma , Neoplasias Uveais , Camundongos , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Transdução de Sinais , Neoplasias Uveais/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral
7.
Am J Respir Cell Mol Biol ; 67(5): 550-561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944139

RESUMO

G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated ß-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl-coenzyme A carboxylase (ACC). PD 102807- induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by ß-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor ß (TGF-ß)-mediated functions, PD 102807 inhibited TGF-ß-induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.


Assuntos
Proteínas Quinases Ativadas por AMP , Arrestina , Humanos , Arrestina/genética , Arrestina/metabolismo , Arrestina/farmacologia , Ligantes , Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos de Músculo Liso/metabolismo , beta-Arrestina 1/metabolismo , Actinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
J Biol Chem ; 298(10): 102421, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030052

RESUMO

Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse ß-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Insulina , Proinsulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Glucose/farmacologia , Insulina/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Linhagem Celular
9.
Br J Pharmacol ; 179(19): 4692-4708, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732075

RESUMO

BACKGROUND AND PURPOSE: ß-Adrenoceptor agonists relieve airflow obstruction by activating ß2 -adrenoceptors, which are G protein-coupled receptors (GPCRs) expressed on human airway smooth muscle (HASM) cells. The currently available ß-adrenoceptor agonists are balanced agonists, however, and signal through both the stimulatory G protein (Gs )- and ß-arrestin-mediated pathways. While Gs signalling is beneficial and promotes HASM relaxation, ß-arrestin activation is associated with reduced Gs efficacy. In this context, biased ligands that selectively promote ß2 -adrenoceptor coupling to Gs signalling represent a promising strategy to treat asthma. Here, we examined several ß-adrenoceptor agonists to identify Gs -biased ligands devoid of ß-arrestin-mediated effects. EXPERIMENTAL APPROACH: Gs -biased ligands for the ß2 -adrenoceptor were identified by high-throughput screening and then evaluated for Gs interaction, Gi interaction, cAMP production, ß-arrestin interaction, GPCR kinase (GRK) phosphorylation of the receptor, receptor trafficking, ERK activation, and functional desensitization of the ß2 -adrenoceptor. KEY RESULTS: We identified ractopamine, dobutamine, and higenamine as Gs -biased agonists that activate the Gs /cAMP pathway upon ß2 -adrenoceptor stimulation while showing minimal Gi or ß-arrestin interaction. Furthermore, these compounds did not induce any receptor trafficking and had reduced GRK5-mediated phosphorylation of the ß2 -adrenoceptor. Finally, we observed minimal physiological desensitization of the ß2 -adrenoceptor in primary HASM cells upon treatment with biased agonists. CONCLUSION AND IMPLICATIONS: Our work demonstrates that Gs -biased signalling through the ß2 -adrenoceptor may prove to be an effective strategy to promote HASM relaxation in the treatment of asthma. Such biased compounds may also be useful in identifying the molecular mechanisms that determine biased signalling and in design of safer drugs.


Assuntos
Asma , Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Asma/tratamento farmacológico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Fenótipo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia
10.
Clin Chim Acta ; 532: 79-83, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623402

RESUMO

BACKGROUND: A hitherto undescribed form of diabetes mellitus type 2 is reported in a Flemish family. In these patients, markedly elevated gastrin levels were observed, which could not be linked to gastrointestinal symptoms. MATERIALS AND METHODS: Gel permeation chromatography was performed for gastrin, insulin, and proinsulin. Proprotein convertase subtilisin/kexin type (PCSK1 and PCSK2)] were sequenced. Whole-exome sequencing was performed on the genomic DNA extracted from leukocytes of the proband of the family. RESULTS: Gel permeation chromatography revealed that the apparent hypergastrinemia was caused by the accumulation of biologically inactive progastrin. Besides, high serum concentrations of proinsulin and intact fibroblast growth factor 23 (FGF23) were also detected. Sequencing of PCSK1 and PCSK2 genes did not reveal any mutations in these genes. Whole exome sequencing revealed a c.1150C > T (p.Pro384Ser) mutation in G protein-coupled receptor kinase 6 (GRK6), which cosegregated with the disease. Expression of the mutant enzyme in mammalian cells revealed that it was mislocalized compared to the wild-type GRK6. CONCLUSIONS: In the affected patients, prohormone processing is impaired likely due to the altered function of mutant GRK6. Delayed pro-insulin processing causes hypoglycaemia episodes a couple of hours following meals. In addition, increased plasma concentrations of progastrin and intact FGF23 in the affected individuals can be explained by incomplete processing of the precursor hormones.


Assuntos
Diabetes Mellitus Tipo 2 , Proinsulina , Animais , Sequência de Bases , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Gastrinas/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mutação , Proinsulina/genética , Proinsulina/metabolismo
11.
J Biol Chem ; 298(2): 101551, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973340

RESUMO

WHIM syndrome is a rare immunodeficiency disorder that is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. While several gain-of-function mutations that lead to C-terminal truncations, frame shifts and point mutations in the chemokine receptor CXCR4 have been identified in WHIM syndrome patients, the functional effect of these mutations are not fully understood. Here, we report on a new WHIM syndrome mutation that results in a frame shift within the codon for Ser339 (S339fs5) and compare the properties of S339fs5 with wild-type CXCR4 and a previously identified WHIM syndrome mutant, R334X. The S339fs5 and R334X mutants exhibited significantly increased signaling compared to wild-type CXCR4 including agonist-promoted calcium flux and extracellular-signal-regulated kinase activation. This increase is at least partially due to a significant decrease in agonist-promoted phosphorylation, ß-arrestin binding, and endocytosis of S339fs5 and R334X compared with wild-type CXCR4. Interestingly, there were also significant differences in receptor degradation, with S339fs5 having a very high basal level of degradation compared with that of R334X and wild-type CXCR4. In contrast to wild-type CXCR4, both R334X and S339fs5 were largely insensitive to CXCL12-promoted degradation. Moreover, while basal and agonist-promoted degradation of wild-type CXCR4 was effectively inhibited by the CXCR4 antagonist TE-14016, this had no effect on the degradation of the WHIM mutants. Taken together, these studies identify a new WHIM syndrome mutant, CXCR4-S339fs5, which promotes enhanced signaling, reduced phosphorylation, ß-arrestin binding and endocytosis, and a very high basal rate of degradation that is not protected by antagonist treatment.


Assuntos
Doenças da Imunodeficiência Primária , Receptores CXCR4 , Verrugas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Humanos , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Verrugas/genética , Verrugas/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
12.
Mol Pharmacol ; 101(2): 87-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853152

RESUMO

G protein-coupled receptors (GPCRs) transduce a diverse variety of extracellular stimuli into intracellular signaling. These receptors are the most clinically productive drug targets at present. Despite decades of research on the signaling consequences of molecule-receptor interactions, conformational components of receptor-effector interactions remain incompletely described. The ß 2-adrenergic receptor (ß 2AR) is a prototypical and extensively studied GPCR that can provide insight into this aspect of GPCR signaling thanks to robust structural data and rich pharmacopeia. Using bioluminescence resonance energy transfer -based biosensors, second messenger assays, and biochemical techniques, we characterize the properties of ß 2AR-F193A. This single point mutation in extracellular loop 2 of the ß 2AR is sufficient to intrinsically bias the ß 2AR away from ß-arrestin interaction and demonstrates altered regulatory outcomes downstream of this functional selectivity. This study highlights the importance of extracellular control of intracellular response to stimuli and suggests a previously undescribed role for the extracellular loops of the receptor and the extracellular pocket formed by transmembrane domains 2, 3, and 7 in GPCR regulation that may contribute to biased signaling at GPCRs. SIGNIFICANCE STATEMENT: The role of extracellular G protein-coupled receptor (GPCR) domains in mediating intracellular interactions is poorly understood. We characterized the effects of extracellular loop mutations on agonist-promoted interactions of GPCRs with G protein and ß-arrestin. Our studies reveal that F193 in extracellular loop 2 in the ß2-adrenergic receptor mediates interactions with G protein and ß-arrestin with a biased loss of ß-arrestin binding. These results provide new insights on the role of the extracellular domain in differentially modulating intracellular interactions with GPCRs.


Assuntos
Líquido Extracelular/metabolismo , Fenilalanina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Fenilalanina/química , Fenilalanina/genética , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , beta-Arrestinas/química , beta-Arrestinas/genética
13.
Cancers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944815

RESUMO

Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.

14.
Cancers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830903

RESUMO

Uveal melanoma is the most common primary ocular malignancy in adults, characterized by gene mutations in G protein subunit alpha q (GNAQ) and G protein subunit alpha 11 (GNA11). Although they are considered to be driver mutations, their role in MUM remains elusive. We investigated key somatic mutations of MUM and their impact on patients' survival after development of systemic metastasis (Met-to-Death). Metastatic lesions from 87 MUM patients were analyzed by next generation sequencing (NGS). GNA11 (41/87) and GNAQ (39/87) mutations were most predominantly seen in MUM. Most GNA11 mutations were Q209L (36/41), whereas GNAQ mutations comprised Q209L (14/39) and Q209P (21/39). Epigenetic pathway mutations BAP1 (42/66), SF3B1 (11/66), FBXW7 (2/87), PBRM1 (1/66), and SETD2 (1/66) were found. No specimen had the EIF1AX mutation. Interestingly, Met-to-Death was longer in patients with GNAQ Q209P compared to GNAQ/GNA11 Q209L mutations, suggesting the difference in mutation type in GNAQ/GNA11 might determine the prognosis of MUM. Structural alterations of the GNAQ/GNA11 protein and their impact on survival of MUM patients should be further investigated.

15.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806476

RESUMO

Agonist activation of G protein-coupled receptors promotes sequential interaction of the receptor with heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. GRKs play a central role in mediating the switch from G protein to arrestin interaction and thereby control processes such as receptor desensitization and trafficking and arrestin-mediated signaling. In this review, I provide a historical perspective on some of the early studies that identified the family of GRKs with a primary focus on the non-visual GRKs. These studies included identification, purification, and cloning of the ß-adrenergic receptor kinase in the mid- to late-1980s and subsequent cloning and characterization of additional members of the GRK family. This helped to lay the groundwork for ensuing work focused on understanding the structure and function of these important enzymes.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Fosforilação , Transdução de Sinais
16.
Curr Opin Endocr Metab Res ; 16: 56-65, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718657

RESUMO

G protein-coupled receptors (GPCRs) interact with three protein families following agonist binding: heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs) and arrestins. GRK-mediated phosphorylation of GPCRs promotes arrestin binding to uncouple the receptor from G protein, a process called desensitization, and for many GPCRs, arrestin binding also promotes receptor endocytosis and intracellular signaling. Thus, GRKs play a central role in modulating GPCR signaling and localization. Here we review recent advances in this field which include additional insight into how GRKs target GPCRs and bias signaling, and the development of specific inhibitors to dissect GRK function in model systems.

17.
Cell Signal ; 80: 109905, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385503

RESUMO

The ß-adrenergic receptors (ßARs) include three subtypes, ß1, ß2 and ß3. These receptors are widely expressed and regulate numerous physiological processes including cardiovascular and metabolic functions and airway tone. The ßARs are also important targets in the treatment of many diseases including hypertension, heart failure and asthma. In some cases, the use of current ßAR ligands to treat a disease is suboptimal and can lead to severe side effects. One strategy to potentially improve such treatments is the development of biased agonists that selectively regulate a subset of ßAR signaling pathways and responses. Here we discuss the compounds identified to date that preferentially activate a Gs- or ß-arrestin-mediated signaling pathway through ßARs. Mechanistic insight on how these compounds bias signaling sheds light on the potential development of even more selective compounds that should have increased utility in treating disease.


Assuntos
Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Ligantes , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos beta/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestina 1/metabolismo
18.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33321095

RESUMO

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Quinase 5 de Receptor Acoplado a Proteína G/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera , Especificidade por Substrato , Termodinâmica
19.
Trends Pharmacol Sci ; 41(6): 387-389, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362341

RESUMO

The ability to design 'biased' drugs that selectively activate G protein-coupled receptor (GPCR) signaling pathways beneficial in treating a disease, while limiting their side effects, is of broad significance. Lee et al. move us a step closer to this important goal by identifying structural differences in the ß1-adrenoceptor in complex with ß-arrestin 1 versus a G protein-mimicking nanobody.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , beta-Arrestina 1/química , Animais , Materiais Biomiméticos/química , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Domínio Único/química , beta-Arrestina 1/metabolismo
20.
Mol Cell Biochem ; 461(1-2): 103-118, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31363957

RESUMO

G protein-coupled receptor kinases (GRKs) phosphorylate the activated forms of G protein-coupled receptors (GPCRs), leading to receptor desensitization and internalization. In addition, GRKs can modify the activity of many non-GPCR-signaling pathways as well, controlling other cellular functions beyond that directly associated with a GPCR. In this report, we show that cervical cancer HeLa cells and breast cancer MDA MB 231 cells with reduced GRK5 expression display increased sensitivity to the apoptotic effects of paclitaxel (Taxol). This effect in cancer cells with low GRK5 levels could be because of blunted histone deacetylase 6 (HDAC6) activity that leads to an increase in α-tubulin acetylation levels, which augments paclitaxel sensitivity. We demonstrate that GRK5 and HDAC6 form a signaling complex in cells and in vitro. GRK5 phosphorylates HDAC6 at Ser-21 to promote its deacetylase activity. Therefore, the GRK5-HDAC6 interaction may contribute to paclitaxel resistance in cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Paclitaxel/farmacologia , Acetilação , Apoptose/efeitos dos fármacos , Biocatálise/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Docetaxel/farmacologia , Feminino , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HeLa , Desacetilase 6 de Histona/metabolismo , Histonas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...